Abstract

The paper presents the concepts of a neural control architecture that is able to learn high quality control behaviour in technical process control from scratch. As the input to the learning system, only the control target must be specified. In the first part of the article, the underlying theoretical principles of dynamic programming methods are explained, and their adaptation to the context of technical process control is described. The second part discusses the basic capabilities of the learning system on a typical benchmark problem, where a special focus lies on the quality of the acquired control law. The application to a highly nonlinear chemical reactor and to an instable multi-output system shows the ability of the proposed neural control architecture to learn even difficult control strategies from scratch.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.