Abstract
This paper presents a novel concept of a modular multirotor aerial robotic platform that can be used for specific profiles of heavy payload missions. A comprehensive mathematical model of the multirotor unmanned aerial vehicle (UAV) is presented, which is divided into the dynamic model and the control allocation scheme that describes the configuration of the aircraft. The components of the propulsion and energy module are selected, and the characterization of the propulsion units is carried out, as well as a preliminary analysis of the module parameters with regard to the considered payloads from 5 to 50 kg. The main goal is to design a modular aircraft that consists of easy-to-assemble modules and that enables the assembly of different propulsion and energy module configurations. Based on the analysis of system parameters, a modular aerial system is designed and the process of manufacturing using rapid prototyping technologies is presented. Based on the parameters obtained from the aircraft assembly CAD model and the implemented mathematical model, simulations are conducted for the two considered missions in the field of smart agriculture. For the purpose of conducting preliminary experiments, a quadrotor aircraft is built and tested in the case of attitude and remote control.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have