Abstract

Direct numerical simulations are used to study the interaction of a stream of small heavy inertial particles with the laminar and turbulent wakes of an immobile sphere facing an incompressible uniform inflow. Particles that do not collide with the obstacle but move past it are found to form preferential concentrations both in the sphere boundary layer and in its wake. In the laminar case, the upstream diverging flow pattern is responsible for particle clustering on a cylinder that extends far downstream the sphere. The interior of this surface contains no particles and can be seen as a shadow of the large obstacle. Such concentration profiles are also present in the case of turbulent wakes but show a finite extension. The sphere shadow is followed by a region around the axis of symmetry where the concentration is higher than the average. It originates from a resonant centrifugal expulsion of particles from shed vortices. The consequence of this concentration mechanism on monodisperse inter-particle collisions is also briefly discussed. They are enhanced by both the increased concentration and the presence of large velocity differences between particles in the wake.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call