Abstract

Abstract. Environment and plant measurements were made to determine what factors may limit growth of deepwater and floating rice plants during partial or complete submergence. Field surveys included measurements of temperature, pH, light, O2 and CO2 in floodwater in Thailand. In addition, measurements were made of O2 and CO2 concentrations inside internodal lacunae of deepwater and floating rice growing at 0.5–2.0 m water depths.The bulk of measurements were taken during periods when the changes in water level were less than 50 mm d−1. In the 0–0.02 m surface layer of floodwater at any location there were large changes in oxygen concentrations over diurnal cycles: there were decreases during the night down to 0.02–0.18 mol m−3 O2 at 0600 h and increases during the day to 0.13–0.28 mol m−3 O2 at 1500 h (0.28 mol m−3 being 120% of the O2 concentration of air saturated water at 30°C). During the day oxygen concentrations decreased with increasing water depth; concentrations just above the soil surface were occasionally zero. Most of this gradient disappeared during the night, and at dawn the 0.6 m surface layer of water had uniform low O2 concentrations.O2 concentrations were also measured during flash floods in Thailand. In contrast to the conditions with only small increases in water level, the O2 concentrations in the water during flash floods were more uniform with depth and changed little over a diurnal cycle, the O2 ranging between 0.14–0.19 mol m−3.In most locations floodwater contained 0.2–1.9 mol m−3 CO2 and 0.7–1.6 mol m−3 bicarbonate; however, in a location with acid sulphate soil CO2 was only 0.05–0.2 mol m−3, and bicarbonate concentrations were several fold lower. Concentrations of CO2 in floodwater increased with increasing water depth.O2 and CO2 concentrations inside internodal lacunae of rice were determined in the field when water depth were 1–2 m. Concentrations of O2 in internodes at the water surface were 16–20%, and decreased to 10% and 5% at 0.8 and 1.8 m water depth respectively. There was no diurnal cycle in O2 concentrations inside internodes. In contrast, CO2 concentrations in the lacunae increased with water depth and ranged from 1–3% in internodes at the water surface to 5–10% in internodes at 1.8 m water depth. There was evidence for a diurnal cycle in CO2 concentrations in the basal internode near the soil surface, CO2 increased during the day and decreased during the night.The above data are used to show that there is little or no relationship between gas concentrations in floodwater and internodal lacunae of rice plants. Results are discussed in relation to O2 supply to submerged portions of rice and metabolism of these tissues at low O2 concentrations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call