Abstract

When pathogens become airborne, they travel associated with particles of different size and composition. Particle size determines the distance across which pathogens can be transported, as well as the site of deposition and the survivability of the pathogen. Despite the importance of this information, the size distribution of particles bearing viruses emitted by infectious animals remains unknown. In this study we characterized the concentration and size distribution of inhalable particles that transport influenza A virus (IAV), porcine reproductive and respiratory syndrome virus (PRRSV), and porcine epidemic diarrhea virus (PEDV) generated by acutely infected pigs and assessed virus viability for each particle size range. Aerosols from experimentally infected pigs were sampled for 24 days using an Andersen cascade impactor able to separate particles by size (ranging from 0.4 to 10 micrometer (μm) in diameter). Air samples collected for the first 9, 20 and the last 3 days of the study were analyzed for IAV, PRRSV and PEDV, respectively, using quantitative reverse transcription polymerase chain reaction (RT-PCR) and quantified as geometric mean copies/m3 within each size range. IAV was detected in all particle size ranges in quantities ranging from 5.5x102 (in particles ranging from 1.1 to 2.1μm) to 4.3x105 RNA copies/m3 in the largest particles (9.0–10.0μm). PRRSV was detected in all size ranges except particles between 0.7 and 2.1μm in quantities ranging from 6x102 (0.4–0.7μm) to 5.1x104 RNA copies/m3 (9.0–10.0μm). PEDV, an enteric virus, was detected in all particle sizes and in higher quantities than IAV and PRRSV (p < 0.0001) ranging from 1.3x106 (0.4–0.7μm) to 3.5x108 RNA copies/m3 (9.0–10.0μm). Infectious status was demonstrated for the 3 viruses, and in the case of IAV and PRRSV, viruses were isolated from particles larger than 2.1μm. In summary, our results indicated that airborne PEDV, IAV and PRRSV can be found in a wide range of particle sizes. However, virus viability is particle size dependent.

Highlights

  • IntroductionThose transmitted through aerosols are the most difficult to control [1]

  • Among all infectious agents, those transmitted through aerosols are the most difficult to control [1]

  • The composition and size distribution of these particles will determine the location of deposition in the susceptible host, and influence the time the infectious agents can remain suspended in the air, the distance across which they can be transported, and the survivability and infectivity of the pathogens [2,3,4]

Read more

Summary

Introduction

Those transmitted through aerosols are the most difficult to control [1]. The speed of dispersion of airborne infectious agents makes them hard to contain and protect against, and the wide reach of susceptible hosts makes the control of airborne pathogens a priority for public and animal health officials. The composition and size distribution of these particles will determine the location of deposition in the susceptible host, and influence the time the infectious agents can remain suspended in the air, the distance across which they can be transported, and the survivability and infectivity of the pathogens [2,3,4]. Particles of small size can remain suspended in the air for long periods, potentially exposing a large number of susceptible individuals, including those close to the source and those at greater distances [5]. Temperature and wind currents are the most important environmental factors that will determine the settling time of airborne particles that contain volatile components

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.