Abstract

Cross-flow microfiltration was used to concentrate field and skim latex suspensions and recover the smallest compounds (proteins, sugars, etc.) in permeate (serum solutions). The experiments were performed in a lab-scale microfiltration unit equipped with ceramic membranes. In continuous mode, the operations were performed at constant trans-membrane pressure (0.5 bars), constant cross-flow velocity (3 m/s) and constant temperature (28 ± 2°C). In retentate, the volumetric concentration factor was only close to 2 (about 54% of total solid content, TSC) when concentrating the field latex suspensions, and it reached 10 (close to 40% TSC) when concentrating skim latex suspensions. The quality of retentate suspensions let envisage a significant potential of industrial valorization. The membrane fouling rates appeared as an increasing function of dry rubber content suspension, and the main fouling origin (94%) was linked to a reversible accumulation of suspended compounds on the membrane surface. Permeate appeared as a clear yellow solution containing the smallest soluble organic fractions that show a high degree of biodegradability when using biochemical methane potential tests. The chemical oxygen demand (COD) removal was then higher than 92% and the methane production yield was close to 0.29 NLCH4/gCODremoved. The association of a membrane separation step and anaerobic digestion appeared, then, as a relevant solution to recover rubber content from skim latex suspensions and energy from the anaerobic digestion of serum.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call