Abstract

Silica particles are mainly used for the concentration of nucleic acid for diagnostic purposes. This is usually done under acidic or chaotropic conditions that will demolish most of the living organisms and prevent the application of other diagnostic tests. Here we describe the development of a method for the capturing and concentration of Bacillus spores using silica magnetic particles to enable fast and sensitive detection. We have shown that capturing various Bacilli spores via silica magnetic particles is limited, with large differences between spore batches (42 +/- 25%). The hydrophobic exosporium layer of spore limits the capture by the hydrophilic silica beads. Partial removal of Bacillus exosporium increases capture efficiency. To increase capturing efficiency without harming the spores' viability, a cationic lipid, didecyldimethylammonium bromide (DDAB), was used as a coat for the negatively charged silica particles. DDAB treatment increased capture efficiency from 42% to more than 90%. Using this method, we were able to capture as few as 100 Bacillus anthracis spores/mL with 90% efficacy. Release of captured spores was achieved by the addition of albumin. The capture and release processes were verified by plating and by flow cytometry using light scatter analysis. The method is simple, efficient, easy to operate, and fast.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call