Abstract

Compressed hydrogen stored at cryogenic temperatures has a much higher density than room-temperature storage, which enables large-scale hydrogen storage and transport. An understanding of the release of cryogenic hydrogen from pressurized vessels is needed to evaluate the risk and safety concerns with the use of this fuel. The present work extends the analysis of previous experimental studies that measured the gas concentrations of cryo-compressed hydrogen jets and methane jets using a laser Raman scattering diagnostic system. Since the Raman signals are very small, a denoising algorithm was applied to significantly reduce the noise to enable statistical analysis of the data. The transient features of the turbulent jets were characterized by their concentration intermittencies and probability density functions (PDFs). A two-part PDF was developed to predict the bimodal features of the jet concentration distributions. Then, the flammability factors of the cryogenic jets were calculated based on the intermittency and the PDF.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call