Abstract

There are at least three distinct MAP kinase signaling modules in mammalian cells, distinguished by the family of kinases (Erk, SAPK/JNK, or p38) that is ultimately activated. Many input signals activate multiple MAP kinase cascades, and the mechanisms that control the specificity of signal output are not well understood. We show that SEK1/MKK4, a MAP kinase kinase proposed to activate SAPK/JNK, is a very potent inhibitor of p54 SAPK beta/JNK3 both in vitro and in vivo if present at equimolar or higher ratios. In contrast SEK can activate SAPK when present in substoichiometric amounts, but this activation is slow, consistent with the rate-limiting step in activation being the dissociation of an inactive SEK:SAPK complex. The N-terminal unique region of SEK is both necessary and partially sufficient for inhibition of SAPK, and is also necessary for activation of SAPK by SEK in vitro. We have also used the p38 MAP kinase and its activator MKK6 to examine the regulatory relationships among different kinases involved in stress responses. We show using purified kinases that inhibitory activity is specific for the combination of SEK and SAPK: SEK can activate but not inhibit p38, and MKK6 can activate but not inhibit SAPK beta and p38. These results reveal a potential mechanism for regulating stress-activated kinases, adding to a growing body of evidence suggesting that MAP kinases are controlled by relatively stable interactions with their activators.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.