Abstract

The concentration dependence of the unidirectional chloride flux in human red cell ghosts was studied under selfexchange and under homoexchange conditions. Under selfexchange conditions the intracellular concentration of chloride [Cl]in is equal to the extracellular concentration [Cl]ex and [Cl]in and [Cl]ex are raised concomitantly. Under homoexchange conditions [Cl]in or [Cl]ex were varied separately at a fixed trans-concentration of chloride. The chloride fluxes were calculated from the rate of the tracer efflux and the intracellular chloride. All experiments were executed in isotonic (330 mosM) KCl/K-citrate/sorbitol solutions containing 0-100 mM KCl, 40 mM K-citrate and different concentrations of sorbitol for isoosmotic substitution. The chloride selfexchange and the chloride homoexchange fluxes exhibit a pure saturation kinetics. The halfsaturation constant for the chloride selfexchange was approximately 20 mM, the maximal flux was approx. 3.5 X 10(-4) mol/(min . g cells). The apparent chloride halfsaturation constants from the homoexchange experiments were in the range of 0.9-4.5 mM for the outer and of 5.5-14.5 mM (0 degree C, pH 7.3) for the inner membrane surface, both halfsaturation constants increase with increasing trans-concentrations. At infinite trans-concentrations of chloride, the halfsaturation constant for the outer and the inner membrane surface amounts to approximately 5 mM and approximately 15 mM, respectively. The slope of the double reciprocal plots of flux versus cis-chloride concentration decreases with increasing trans-concentration of chloride. The kinetics of the chloride transport provides evidence for a carrier mediated transport mechanism with a single reciprocating transport site. The translocation of the loaded carrier appears to be much faster than the translocation of the unloaded carrier.(ABSTRACT TRUNCATED AT 250 WORDS)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.