Abstract

We describe an algorithm to compute the Tutte polynomial of large fragments of Archimedean tilings by squares, triangles, hexagons and combinations thereof. Our algorithm improves a well known method for computing the Tutte polynomial of square lattices. We also address the problem of obtaining Tutte polynomial evaluations from the symbolic expressions generated by our algorithm, improving the best known lower bound for the asymptotics of the number of spanning forests, and the lower and upper bounds for the asymptotics of the number of acyclic orientations of the square lattice.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.