Abstract

A fourientation of a graph is a choice for each edge of the graph whether to orient that edge in either direction, leave it unoriented, or biorient it. Fixing a total order on the edges and a reference orientation of the graph, we investigate properties of cuts and cycles in fourientations which give trivariate generating functions that are generalized Tutte polynomial evaluations of the form (k+m)n-1(k+l)gTαk+βl+mk+m,γk+l+δmk+l\\documentclass[12pt]{minimal}\t\t\t\t\\usepackage{amsmath}\t\t\t\t\\usepackage{wasysym}\t\t\t\t\\usepackage{amsfonts}\t\t\t\t\\usepackage{amssymb}\t\t\t\t\\usepackage{amsbsy}\t\t\t\t\\usepackage{mathrsfs}\t\t\t\t\\usepackage{upgreek}\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\t\t\t\t\\begin{document}$$\\begin{aligned} (k+m)^{n-1}(k+l)^gT\\left( \\frac{\\alpha k + \\beta l + m}{k+m},\\; \\frac{\\gamma k + l + \\delta m}{k+l}\\right) \\end{aligned}$$\\end{document}for alpha ,gamma in {0,1,2} and beta , delta in {0,1}. We introduce an intersection lattice of 64 cut–cycle fourientation classes enumerated by generalized Tutte polynomial evaluations of this form. We prove these enumerations using a single deletion–contraction argument and classify axiomatically the set of fourientation classes to which our deletion–contraction argument applies. This work unifies and extends earlier results for fourientations due to Gessel and Sagan (Electron J Combin 3(2):Research Paper 9, 1996), results for partial orientations due to Backman (Adv Appl Math, forthcoming, 2014. arXiv:1408.3962), and Hopkins and Perkinson (Trans Am Math Soc 368(1):709–725, 2016), as well as results for total orientations due to Stanley (Discrete Math 5:171–178, 1973; Higher combinatorics (Proceedings of NATO Advanced Study Institute, Berlin, 1976). NATO Advanced Study Institute series, series C: mathematical and physical sciences, vol 31, Reidel, Dordrecht, pp 51–62, 1977), Las Vergnas (Progress in graph theory (Proceedings, Waterloo silver jubilee conference 1982), Academic Press, New York, pp 367–380, 1984), Greene and Zaslavsky (Trans Am Math Soc 280(1):97–126, 1983), and Gioan (Eur J Combin 28(4):1351–1366, 2007), which were previously unified by Gioan (2007), Bernardi (Electron J Combin 15(1):Research Paper 109, 2008), and Las Vergnas (Tutte polynomial of a morphism of matroids 6. A multi-faceted counting formula for hyperplane regions and acyclic orientations, 2012. arXiv:1205.5424). We conclude by describing how these classes of fourientations relate to geometric, combinatorial, and algebraic objects including bigraphical arrangements, cycle–cocycle reversal systems, graphic Lawrence ideals, Riemann–Roch theory for graphs, zonotopal algebra, and the reliability polynomial.

Highlights

  • Throughout we use graph to mean finite, undirected graph

  • We introduce an intersection lattice of 64 cut–cycle fourientation classes enumerated by generalized Tutte polynomial evaluations of this form

  • The Tutte polynomial is the most general Tutte–Grothendieck invariant one can associate to a graph; that is, any graph invariant that satisfies a deletion– contraction recurrence is a specialization of the Tutte polynomial

Read more

Summary

Background

Throughout we use graph to mean finite, undirected graph ( we allow loops and multiple edges). By fixing a total order on the edges and a reference orientation of the graph, the previous result can be generalized in the following way: the number of acyclic orientations such that the minimum edge in each directed cut is oriented as in the reference orientation is T (1, 0). These orientations give distinguished representatives for the set of acyclic orientations modulo cut reversals, which can be obtained greedily. We explore this orientation activity approach in a sequel paper with Traldi [6]; see Sect. 3.5 for more details

Notation and terminology
Partial orientations
The reliability polynomial
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call