Abstract

AbstractHigh‐resolution digital elevation models (DEMs) from repeat LiDAR (light detection and ranging) or SfM (structure from motion) surveys have become an important tool in process geomorphology. The spatial pattern of negative and positive changes of surface elevation on raster DEMs of difference (DoD) can be interpreted in terms of geomorphic processes, and has been used for morphological budgeting. We show how the application of flow routing algorithms and flow accumulation opens new opportunities for the analysis of DoD. By accumulating the values of the DoD along downslope flowpaths delineated on a DEM, these algorithms lend themselves to computing the net balance, i.e. sediment yield (SY), for the contributing area of each cell. Doing the same for the negative subset of the DoD yields a minimum estimate of erosion (E) within the contributing area. The division of SY by E yields (a maximum estimate of) the sediment delivery ratio (SDR), that is the proportion of material eroded within the contributing area of each cell that has been exported from that area. The resulting SDR is a spatially distributed measure of functional sediment connectivity. In this letter, we develop the computationally simple approach by means of an example DoD from a lateral moraine section in the Upper Kaunertal Valley, Austrian Central Alps. We also discuss advantages, assumptions and limitations, and outline potential applications to connectivity research using field‐, laboratory‐, and model‐based DoD. Copyright © 2018 John Wiley & Sons, Ltd.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call