Abstract
The problem of computing the greatest common divisor (GCD) of multivariate polynomials, as one of the most important tasks of computer algebra and symbolic computation in more general scope, has been studied extensively since the beginning of the interdisciplinary of mathematics with computer science. For many real applications such as digital image restoration and enhancement, robust control theory of nonlinear systems, L1-norm convex optimization in compressed sensing techniques, as well as algebraic decoding of Reed-Solomon and BCH codes, the concept of sparse GCD plays a core role where only the greatest common divisors with much fewer terms than the original polynomials are of interest due to the nature of problems or data structures. This paper presents two methods via multivariate polynomial interpolation which are based on the variation of Zippel’s method and Ben-Or/Tiwari algorithm, respectively. To reduce computational complexity, probabilistic techniques and randomization are employed to deal with univariate GCD computation and univariate polynomial interpolation. The authors demonstrate the practical performance of our algorithms on a significant body of examples. The implemented experiment illustrates that our algorithms are efficient for a quite wide range of input.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.