Abstract
A numerical method is developed for computing waveguide bends that preserve as much power as possible in fundamental mode. The method solves an optimization problem for a small number of points used to define the bend axis by cubic-spline functions. A wide-angle beam-propagation method formulated in a curvilinear coordinate system is used to compute the wave field in the bend. Compared with a circular bend and an S-bend given by a cosine curve, optimal bends have a smaller curvature near the two ends for a better connection with the straight input and output waveguides. For multimode waveguides, the optimal bends can be used to remove the coupling between the fundamental mode and other propagating modes.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have