Abstract
Abstract The partial differential equation of motion of an axially moving beam with spatially varying geometric, mass, and material properties has been derived. Using the theory of linear time-varying systems and numerical optimization, a general algorithm has been developed to compute complex eigenvalues/natural frequencies, mode shapes, and the critical speed for stability. Numerical results from the new method are presented for beams with spatially varying rectangular cross sections with sinusoidal variation in thickness and sine-squared variation in width. They are also compared to those from the Galerkin method. It has been found that critical speed of the beam can be significantly reduced by nonuniformity in a beam's cross section.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.