Abstract
This paper deals with transverse vibrations of axisymmetrical annular plates of concave parabolic thickness. A closed-form solution of the partial differential equation of motion is reported. An approach in which both method of multiple scales and method of factorization have been employed is presented. The method of multiple scales is used to reduce the partial differential equation of motion to two simpler partial differential equations that can be analytically solved. The solutions of the two differential equations are two levels of approximation of the exact solution of the problem. Using the factorization method for solving the first differential equation, which is homogeneous and includes a fourth-order spatial-dependent operator and second-order time-dependent operator, the general solution is obtained in terms of hypergeometric functions. The first diferential equation and the second differential equation (nonhomogeneous) along with the given boundary conditions give so-called zero-order and first-order approximations, respectively, of the natural frequencies and mode shapes. Any boundary conditions could be considered. The influence of Poisson’s ratio on the natural frequencies and mode shapes could be further studied using the first-order approximations reported here. This approach can be extended to nonlinear, and/or forced vibrations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.