Abstract
A positive water balance is the main prerequisite for successful hydro-reclamation of residual mining pits. Under the current conditions of climate change, long dry periods occur more frequently, which may have a negative impact on the water supply to fill the pit lakes. This study deals with the hydrological balance of the Medard mining pit, which has been computed with the help of the Water Balance Conceptual Model (WBCM). The purpose of this study is to test the feasibility of the WBCM model for water balance estimation in endorheic catchments. The water contribution of the Medard mining pit’s own catchment was quantified, in order to determine if an external supply of water is necessary to fill the pit within several years. The outcomes of the study have shown that the internal water sources of the Medard catchment can hardly provide sufficient water supply, either during a normal, or during a dry hydrological year. Thus, an external water supply from the Ohre River is needed in addition to the water from the mining pits (the quality of the water from the mining pits must of course be carefully monitored). The WBCM-6 model can serve as a useful tool in hydro-reclamation of residual mining pits. However, the final performance regulations of pit lakes must be based on water management balance, including human-induced activities.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.