Abstract

Since 2013 there have been several developments in algorithms for computing discrete logarithms in small-characteristic finite fields, culminating in a quasi-polynomial algorithm. In this paper, we report on our successful computation of discrete logarithms in the cryptographically-interesting characteristic-three finite field $\mathbb{F}_{3^{6.509}}$ using these new algorithms; prior to 2013, it was believed that this field enjoyed a security level of 128 bits. We also show that a recent idea of Guillevic can be used to compute discrete logarithms in the cryptographically-interesting finite field $\mathbb{F}_{3^{6.709}}$ using essentially the same resources as we expended on the $\mathbb{F}_{3^{6.509}}$ computation. Finally, we argue that discrete logarithms in the finite field $\mathbb{F}_{3^{6.1429}}$ can feasibly be computed today; this is significant because this cryptographically-interesting field was previously believed to enjoy a security level of 192 bits.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.