Abstract

Covariant Lyapunov vectors or Oseledets vectors are increasingly being used for a variety of model analyses in areas such as partial differential equations, nonautonomous differentiable dynamical systems, and random dynamical systems. These vectors identify spatially varying directions of specific asymptotic growth rates and obey equivariance principles. In recent years new computational methods for approximating Oseledets vectors have been developed, motivated by increasing model complexity and greater demands for accuracy. In this numerical study we introduce two new approaches based on singular value decomposition and exponential dichotomies and comparatively review and improve two recent popular approaches of Ginelli et al. (2007) [36] and Wolfe and Samelson (2007) [37]. We compare the performance of the four approaches via three case studies with very different dynamics in terms of symmetry, spectral separation, and dimension. We also investigate which methods perform well with limited data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.