Abstract
The objective of this study was to produce an improved finite element (FE) model of the human middle ear and to compare the model with human data. We began with a systematic and accurate geometric modeling technique for reconstructing the middle ear from serial sections of a freshly frozen temporal bone. A geometric model of a human middle ear was constructed in a computer-aided design (CAD) environment with particular attention to geometry and microanatomy. Using the geometric model, a working FE model of the human middle ear was created using previously published material properties of middle ear components. This working FE model was finalized by a cross-calibration technique, comparing its predicted stapes footplate displacements with laser Doppler interferometry measurements from fresh temporal bones. The final FE model was shown to be reasonable in predicting the ossicular mechanics of the human middle ear.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have