Abstract
For a number of reasons, it is desirable to fabricate coils which, for a known current, shall produce predetermined values of the magnetic field intensity at a number of points within a nuclear magnetic resonance imager. The calculation of the magnetic field intensity at a set of points involves the integration of the Biot-Savart equation for all components of the segments of conductor which make up the coil. This process in itself is a rather formidable task. When this process is parameterized in terms of coil diameter, coil spacing, etc. the problem is to determine the values of these parameters to match values of magnetic field intensities which are desired. The problem thereby increases in complexity to the point where, by ordinary methods, the problem becomes intractable. A generalized solution technique has been developed on a digital computer to implement the rotational discrimination nonlinear regression techniques of Faris, Law and Letcher to find the best solution to this problem. The problem is posed by integrating the Biot-Savart equation. This produces algebraic expressions for incorporation into the optimization program which is executed on a computer in a conversational mode. This technique was employed to specify the dimensions of a rectangular surface coil for the investigation of the whole human spine.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have