Abstract
We propose a novel approach for the detection of microcalcification clusters (MCs) using joint information from digital breast tomosynthesis (DBT) volume and planar projection (PPJ) image. A data set of 307 DBT views was collected with IRB approval using a prototype DBT system. The system acquires 21 projection views (PVs) from a wide tomographic angle of 60° (60°-21PV) at about twice the dose of a digital mammography (DM) system, which allows us the flexibility of simulating other DBT acquisition geometries using a subset of the PVs. In this study, we simulated a 30° DBT geometry using the central 11 PVs (30°-11PV). The narrower tomographic angle is closer to DBT geometries commercially available or under development and the dose is matched approximately to that of a DM. We developed a new joint-CAD system for detection of clustered microcalcifications. The DBT volume was reconstructed with a multiscale bilateral filtering regularized method and a PPJ image was generated from the reconstructed volume. Task-specific detection strategies were designed to combine information from the DBT volume and the PPJ image. The data set was divided into a training set (127 views with MCs) and an independent test set (104 views with MCs and 76 views without MCs). The joint-CAD system outperformed the individual CAD systems for DBT volume or PPJ image alone; the differences in the test performances were statistically significant (p < 0.05) using JAFROC analysis.
Accepted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have