Abstract

Ionic liquids (ILs), molten salts that are liquid at room temperature, are considered as a potential green replacement for toxic volatile organic compounds in many applications. These liquids exhibit unique properties such as negligible vapor pressure, nonflammability, wide liquid range, high thermal and chemical stabilities, and high solvating capacities for inorganic, organic, and polymeric compounds. In this paper, computer-aided molecular design of potential ILs for cellulose dissolution was performed. A quantitative structure–activity relationship (QSAR) model was first developed to predict cellulose solubility in ILs using the group contribution (GC) and artificial neural network (ANN) methods. A mixed integer nonlinear programming (MINLP) problem was then formulated with an objective function that maximizes the QSAR model. The solution to the MINLP problem given by genetic algorithm (GA) corresponded to the optimal ILs structure for cellulose dissolution. For example, the cellulose solubility in IL...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call