Abstract

Physical mechanism of gate-lag or slow current transient in GaAs MESFETs is studied by two-dimensional simulation including surface-state effects. It is shown that the gate-lag becomes noticeable when the deep-acceptor-like surface state acts as a hole trap. To reduce it, the deep acceptor should be made electron-trap-like, which could be realized by reducing the surface-state density. Structures expected to have less gate-lag, such as a self-aligned structure and a recessed-gate structure are also analyzed. It is discussed whether the gate-lag can be completely eliminated in these structures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.