Abstract

Effects of surface states and recess structures on breakdown characteristics of GaAs MESFETs are studied by two-dimensional (2-D) analysis. It is shown that the breakdown voltage could be raised when moderate densities of surface states are included. However, in a case with relatively high densities of surface states, the breakdown voltage could be drastically lowered when introducing a narrowly recessed gate structure. Effects of impact ionization on gate-lag phenomena in GaAs MESFETs are also studied. It is shown that the gate-lag becomes weaker when including the impact ionization. This is attributed to the fact that the potential profiles along the surface are drastically changed when the surface states capture generated carriers. It is suggested that there is a tradeoff relationship between raising the breakdown voltage and reducing the gate-lag.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.