Abstract

Beer is the most consumed alcoholic beverage worldwide and are highly susceptible to fraudulent processes. Traditional sensory analysis can lack precision. With the growth of Industry 4.0, new techniques using artificial intelligence are being developed to address this issue. This scenario makes it appealing to propose low-cost techniques with broad classification capabilities based on sample fingerprints, such as computer vision (CV). CV involves image acquisition, processing, and classification using machine learning. In this work, a computer vision prototype associated with an artificial neural network was developed to classify beer in terms of style and brand. A total of 111 samples were analyzed in triplicate, with the data separated into training and testing sets. Accuracy and precision above 96% were obtained for the training set and 78% for the test set. The computer vision method proved to be a simple, low-cost, eco-friendly, and fast tool for detecting fraud in the brewing industry.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.