Abstract
There is high demand for heavy equipment in civil infrastructure projects and their performance is a determinant of the successful delivery of site operations. Although manufacturers provide equipment performance handbooks, additional monitoring mechanisms are required to depart from measuring performance on the sole basis of unit cost for moved materials. Vision-based tracking and pose estimation can facilitate site performance monitoring. This research develops several regression-based deep neural networks (DNNs) to monitor equipment with the aim of ensuring safety, productivity, sustainability and quality of equipment operations. Annotated image libraries are used to train and test several backbone architectures. Experimental results reveal the precision of DNNs with depthwise separable convolutions and computational efficiency of DNNs with channel shuffle. This research provides scientific utility by developing a method for equipment pose estimation with the ability to detect anatomical angles and critical keypoints. The practical utility of this study is the provision of potentials to influence current practice of articulated machinery monitoring in projects.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.