Abstract

This work was motivated by the limitations of the existing navigation technology for the visually impaired. Most of the existing methods use a point/line measurement sensor for indoor object detection. Therefore, they lack capability in detecting 3D objects and positioning a blind traveler. Stereovision has been used in recent research. However, it cannot provide reliable depth data for object detection. Also, it tends to produce a lower localization accuracy because its depth measurement error quadratically increases with the true distance. This paper suggests a new approach for navigating a blind traveler. The method uses a single 3D time-of-flight camera for both 6-DOF PE and 3D object detection and thus results in a small-sized but powerful RNA. Due to the camera's constant depth accuracy, the proposed egomotion estimation method results in a smaller error than that of existing methods. A new EKF method is proposed to integrate the egomotion into the RNA's 6-DOF pose in the world coordinate system by tracking both visual and geometric features of the operating environment. The proposed method substantially reduces the pose error of a standard EKF method and thus supports a longer range navigation task. One limitation of the method is that it requires a feature-rich environment to work well.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call