Abstract
Computational science and computer simulations have significantly changed the face of science in recent times, even though attempts to extend our computational capacities are by no means new and computer simulations are more or less accepted across scientific fields as legitimate ways of reaching results (Sect. 34.1). Also, a great variety of computational models and computer simulations can be met across science, in terms of the types of computers, computations, computational models, or physical models involved and they can be used for various types of inquiries and in different scientific contexts (Sect. 34.2). For this reason, epistemological analyses of computer simulations are contextual for a great part. Still, computer simulations raise general questions regarding how their results are justified, how computational models are selected, which type of knowledge is thereby produced (Sect. 34.3), or how computational accounts of phenomena partly challenge traditional expectations regarding the explanation and understanding of natural systems (Sect. 34.4). Computer simulations also share various epistemological features with experiments and thought experiments; hence, the need for transversal analyses of these activities (Sect. 34.5). Finally, providing a satisfactory and fruitful definition of computer simulations turns out to be more difficult than expected, partly because this notion is at the crossroads of difficult questions like the nature of representation and computation or the success of scientific inquiries (Sect. 34.6). Overall, a pointed analysis of computer simulations in parallel requires developing insights about the evolving place of human capacities and humans within (computational) science (Sect. 34.7).
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have