Abstract

In this paper, the process of glow discharge in magnetron sputtering is studied by the particle-in-cell with Monte Carlo collision method. The proposed model is a two-dimensional and self-consistent approach. The results show that the discharge mode transits from the negative space-charge-dominated mode to positive space-charge-dominated mode with working pressure increasing or magnetic field weakening. At the transition state, working pressure and magnetic field are 0.67 Pa and 0.05 T, respectively. Discharge current increases as the cathode voltage increases. When pressure increases, discharge current first increases and then tends to balance. When the pressure is higher than 2.5 Pa, current begins to decreases with the increase of the pressure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.