Abstract

The experimental of rolling texture development in pure aluminum with initial texture was carried out. The rolling texture mainly consists of components B and S while the C component is also observed. The rolling textures evolution was simulated by the Taylor-type models. For the full constraints (FC) Taylor model, the mean method over all the possible solutions was used to solve the ambiguity in the selection of the active slip systems. For the relaxed constraints (RC) lath and pancake models, the ambiguity can be solved effectively by some modified principle, in which the strain compatibility can be fulfilled as much as possible. It has been shown that using the principles proposed in this paper, the rolling texture formation and development of pure aluminum with initial texture could be explained by applying different models under different deformation degree.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.