Abstract

We investigated how Natural Language Processing (NLP) algorithms could automatically grade answers to open-ended inference questions in web-based eBooks. This is a component of research on making reading more motivating to children and to increasing their comprehension. We obtained and graded a set of answers to open-ended questions embedded in a fiction novel written in English. Computer science students used a subset of the graded answers to develop algorithms designed to grade new answers to the questions. The algorithms utilized the story text, existing graded answers for a given question and publicly accessible databases in grading new responses. A computer science professor used another subset of the graded answers to evaluate the students’ NLP algorithms and to select the best algorithm. The results showed that the best algorithm correctly graded approximately 85% of the real-world answers as correct, partly correct, or wrong. The best NLP algorithm was trained with questions and graded answers from a series of new text narratives in another language, Slovenian. The resulting NLP algorithm model was successfully used in fourth-grade language arts classes for providing feedback to student answers on open-ended questions in eBooks.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.