Abstract
This study aimed to develop and apply natural language processing (NLP) algorithms to identify recurrent atrial fibrillation (AF) episodes following rhythm control therapy initiation using electronic health records (EHRs). We included adults with new-onset AF who initiated rhythm control therapies (ablation, cardioversion, or antiarrhythmic medication) within two US integrated healthcare delivery systems. A code-based algorithm identified potential AF recurrence using diagnosis and procedure codes. An automated NLP algorithm was developed and validated to capture AF recurrence from electrocardiograms, cardiac monitor reports, and clinical notes. Compared with the reference standard cases confirmed by physicians' adjudication, the F-scores, sensitivity, and specificity were all above 0.90 for the NLP algorithms at both sites. We applied the NLP and code-based algorithms to patients with incident AF (n=22 970) during the 12 months after initiating rhythm control therapy. Applying the NLP algorithms, the percentages of patients with AF recurrence for sites 1 and 2 were 60.7% and 69.9% (ablation), 64.5% and 73.7% (cardioversion), and 49.6% and 55.5% (antiarrhythmic medication), respectively. In comparison, the percentages of patients with code-identified AF recurrence for sites 1 and 2 were 20.2% and 23.7% for ablation, 25.6% and 28.4% for cardioversion, and 20.0% and 27.5% for antiarrhythmic medication, respectively. When compared with a code-based approach alone, this study's high-performing automated NLP method identified significantly more patients with recurrent AF. The NLP algorithms could enable efficient evaluation of treatment effectiveness of AF therapies in large populations and help develop tailored interventions.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: European Heart Journal - Quality of Care and Clinical Outcomes
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.