Abstract

Defect structure and migration pathways of cations in cubic zirconia (ZrO2) have been calculated using two computer modelling techniques. The first is based on the Mott–Littleton method, which considers defects to be embedded in an otherwise perfect crystal, and the second is the supercell approach, which allows finite defect concentrations to be modelled. Using the first approach, migration pathways for both intrinsic and dopant cations have been calculated. Activation energies ranging from 3.1 to 5.8 eV have been calculated assuming a vacancy mechanism. For highly charged dopants a curved pathway was found to be favoured over a straight pathway. The effect of stabilizer concentration on the properties of the system investigated has been analysed using the supercell method; 3 × 3 × 3 and 4 × 4 × 4 supercells containing 3–40 mol% calcia (CaO) or yttria (Y2O3) have been constructed assuming a random distribution of both dopant cations and oxygen vacancies. After relaxation the oxygen vacancies were found to be located adjacent to the zirconium cations in the CaO-doped system, while remaining randomly ordered in the Y2O3-doped system. Also cation vacancies were created, and after relaxation they were surrounded in all systems (CaO-stabilized ZrO2 and Y2O3-stabilized ZrO2) on average by 2.7 oxygen vacancies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call