Abstract

Abstract To obtain a stable output voltage from a recently-developed rectification circuit called a quantum boost series resonant rectifier (QBSRR), two control schemes, digital PI (proportional-integral) control and deadbeat control, are derived for a computer-based system. Since the output voltage regulation loop has a sampling time corresponding to the zero crossing point of the AC line voltage, the output voltage can be controlled regardless of the 120 Hz ripple component. By deriving a simple and exact model for the current program loop (open loop) of a QBSRR and using the pole-assignmenl technique, the controller gains can be systematically designed in the digital PI control scheme. The deadbeat control scheme is also developed to maintain fast dynamic performance in the presence of any load variations. In this control scheme, the controller gain is adjusted in accordance with the load information using a load estimation method. Simulation and experimental results are presented to verify the usefuln...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.