Abstract

Alzheimer’s disease (AD) is the most prevalent neurodegenerative disease causing dementia and poses significant health risks to middle-aged and elderly people. Brain magnetic resonance imaging (MRI) is the most widely used diagnostic method for AD. However, it is challenging to collect sufficient brain imaging data with high-quality annotations. Weakly supervised learning (WSL) is a machine learning technique aimed at learning effective feature representation from limited or low-quality annotations. In this paper, we propose a WSL-based deep learning (DL) framework (ADGNET) consisting of a backbone network with an attention mechanism and a task network for simultaneous image classification and image reconstruction to identify and classify AD using limited annotations. The ADGNET achieves excellent performance based on six evaluation metrics (Kappa, sensitivity, specificity, precision, accuracy, F1-score) on two brain MRI datasets (2D MRI and 3D MRI data) using fine-tuning with only 20% of the labels from both datasets. The ADGNET has an F1-score of 99.61% and sensitivity is 99.69%, outperforming two state-of-the-art models (ResNext WSL and SimCLR). The proposed method represents a potential WSL-based computer-aided diagnosis method for AD in clinical practice.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call