Abstract

In the present paper, two models based on artificial neural networks and genetic programming for predicting split tensile strength and percentage of water absorption of concretes containing Fe 2O 3 nanoparticles have been developed. To build these models, training and testing of the network by using experimental results from 144 specimens produced with 16 different mixture proportions were conducted. The data used in the multilayer feed forward neural networks models and input variables of genetic programming models have been arranged in a format of eight input parameters that cover the cement content, nanoparticle content, aggregate type, water content, the amount of superplasticizer, the type of curing medium, age of curing and number of testing try. According to these input parameters, in the two models, the split tensile strength and percentage of water absorption values of concretes containing Fe 2O 3 nanoparticles were predicted. The training and testing results in the neural network and genetic programming models have shown that every two models are of strong potential for predicting the split tensile strength and percentage of water absorption values of concretes containing Fe 2O 3 nanoparticles. Although neural network has predicted better results, genetic programming is able to predict reasonable values with a simpler method rather than neural network.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.