Abstract

In the present paper, two models based on artificial neural networks and genetic programming for predicting split tensile strength and percentage of water absorption of concretes containing ZrO2 nanoparticles have been developed at different ages of curing. For building these models, training and testing using experimental results for 144 specimens produced with 16 different mixture proportions were conducted. The data used in the multilayer feed forward neural networks models and input variables of genetic programming models were arranged in a format of eight input parameters that cover the cement content, nanoparticle content, aggregate type, water content, the amount of superplasticizer, the type of curing medium, age of curing and number of testing try. According to these input parameters, in the neural networks and genetic programming models, the split tensile strength and percentage of water absorption values of concretes containing ZrO2 nanoparticles were predicted. The training and testing results in the neural network and genetic programming models have shown that two models have strong potential for predicting the split tensile strength and percentage of water absorption values of concretes containing ZrO2 nanoparticles. It has been found that neural network (NN) and gene expression programming (GEP) models will be valid within the ranges of variables. In neural networks model, as the training and testing ended when minimum error norm of network gained, the best results were obtained and in genetic programming model, when 4 genes were selected to construct the model, the best results were acquired. Although neural network have predicted better results, genetic programming is able to predict reasonable values with a simpler method rather than neural network.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.