Abstract

Sarcopenia is a syndrome characterised by loss of skeletal muscle mass, loss of muscle quality, and reduced muscle strength, resulting in low performance. Sarcopenia has been associated with increased mortality and complications after medical interventions. In daily clinical practice, sarcopenia is assessed by clinical assessment of muscle strength and performance tests and muscle mass quantification by dual-energy X-ray absorptio-metry (DXA) or bioelectrical impedance analysis (BIA). Assessment of the skeletal muscle quantity and quality obtained by abdominal computed tomography (CT) has gained interest in the medical community, as abdominal CT is performed for various medical reasons, and quantification of the psoas and skeletal muscle can be performed without additional radiation load and dye administration. The definitions of CT-derived skeletal muscle mass quantification are briefly reviewed: psoas muscle area (PMA), skeletal muscle area (SMA), and transverse psoas muscle thickness (TPMT). We explain how CT attenuation coefficient filters are used to determine PMA and SMA, resulting in the psoas muscle index (PMI) and skeletal muscle index (SMI), respectively, after indexation to body habitus. Psoas muscle density (PMD), a biomarker for skeletal muscle quality, can be assessed by measuring the psoas muscle CT attenuation coefficient, expressed in Hounsfield units. The concept of low-density muscle (LDM) is explained. Finally, we review the medical literature on PMI and PMD as predictors of adverse outcomes in patients undergoing trauma or elective major surgery, transplantation, and in patients with cardiovascular and internal disease. PMI and PMD are promising new biomarkers predicting adverse outcomes after medical interventions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call