Abstract

The computed tomography (CT) image-guided needle biopsy was applied in the diagnosis of lung malignant tumors based on artificial intelligence (AI) algorithm under convolutional neural network (CNN) to explore the effect of artificial intelligence algorithms segmentation in needle biopsy surgery and to guide the diagnosis of lung malignant tumors. The subjects of the study were 100 patients with lung malignant tumors admitted to the hospital. The cases were diagnosed as lung cancers by CT, and they were divided into two groups with 50 people in each group. Among them, 50 people in the control group did not use algorithms for guidance and 50 people in the experimental group used algorithms for guidance. The 50 patients who received needle biopsy without guidance of any algorithm were included in the control group. The results showed that the average coincidence rate of automatic segmentation and manual segmentation by the artificial intelligence algorithm was 97.46%, and the average false positive rate (FPR) and false negative rate (FNR) were 0.07% and 0.08%, respectively. The segmentation time of the algorithm group was 12.5 s, which was significantly shorter than the 36.11 s of the control group, and the segmentation speed was significantly faster. The positive rate of pathology in the control group was 78%, and the pathological positive rate of the algorithm group was 80%. The difference in the pathological positive rate between the two groups was 2%, and the detection effect of the pathological positive rate in the algorithm group was close to that in the control group, which was of positive significance in pathological detection. The satisfaction rate of patients in the algorithm group with the detection effect was 88%, and that of the patients in the control group was 94%. The difference in the detection satisfaction rate between the two groups was 6%. The number of patients with pneumothorax in the algorithm group was 22, the number of patients with bleeding was 21, and the number of patients with infection was 2. The number of patients with pneumothorax in the control group was 17, the number of patients with bleeding was 19, and the number of patients with infection was 3. The patients had a higher probability of pneumothorax and bleeding and a lower probability of infection; there was no significant difference in the incidence of complications between the two groups of patients. In summary, the intelligent algorithm was effective and feasible in segmenting lesions, and the accuracy of segmentation could meet the clinical needs, which can be used as a reference for surgery. CT images based on artificial intelligence algorithms were a good way to guide the needle biopsy in the diagnosis of lung malignant tumors, improving the accuracy and sensitivity of the diagnosis of lung malignant tumors.

Highlights

  • Lung cancer is one of the most common malignant tumors, and the mortality rate is very high [1]

  • Visual Evaluation and Index Evaluation of Segmentation Results of the Lung Area. e segmentation results and evaluation of the lung area are shown in Figures 2–6. e results showed that the average coincidence rate between the automatic segmentation results of artificial intelligence algorithms and the manual segmentation results was 97.46%, and the average values of false positive rate (FPR) and false negative rate (FNR) were 0.07% and 0.08%, respectively. e accuracy rate can meet the clinical needs and can be used as a reference for surgery. e lung segmentation image was more accurate

  • 40 cases were pathologically positive, and the pathologically positive rate of patients was 80%. e difference in the pathological positive rate between the two groups was 2%, indicating that the detection effect of the pathological positive rate of the algorithm group was close to the gold standard of the control group, and the effect was better. erefore, pathological detection can be better performed

Read more

Summary

Introduction

Lung cancer is one of the most common malignant tumors, and the mortality rate is very high [1]. When the case is confirmed, the diagnosis of lung cancer is very important. Ere are many types of lung cancer. Tumorous lesions of lung tissue are the main symptoms. Many systemic diseases can cause lung tissue lesions, and it is very important to clarify the cause of the lesions [2]. In 1883, akur obtained bacteriological data of patients with pneumonia through percutaneous puncture of a brooch [3]. E lung puncture device has evolved from a puncture needle diagnosis to the current coaxial puncture needle diagnosis of tissue cutting. In 1982, Tsai used a semiautomatic biopsy system invented

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.