Abstract

In this combined experimental and theoretical study, a computational protocol is reported to predict the excited states in D‐π‐A compounds containing the B(FXyl)2 (FXyl = 2,6‐bis(trifluoromethyl)phenyl) acceptor group for the design of new thermally activated delayed fluorescence (TADF) emitters. To this end, the effect of different donor and π‐bridge moieties on the energy gaps between local and charge‐transfer singlet and triplet states is examined. To prove this computationally aided design concept, the D‐π‐B(FXyl)2 compounds 1–5 were synthesized and fully characterized. The photophysical properties of these compounds in various solvents, polymeric film, and in a frozen matrix were investigated in detail and show excellent agreement with the computationally obtained data. Furthermore, a simple structure–property relationship is presented on the basis of the molecular fragment orbitals of the donor and the π‐bridge, which minimize the relevant singlet–triplet gaps to achieve efficient TADF emitters.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.