Abstract

Successful application of finite control set model predictive control (FCS-MPC) strategies with long prediction horizon depends on the careful design of the optimization algorithm. The conventional method involves transforming the problem to an equivalent box-constrained integer least-squares (BILS) formulation that can be solved with branch-and-bound techniques such as the sphere decoding algorithm (SDA). In this work, it is proposed to define an artificial neural network (ANN) to replace the SDA, avoiding its inherent computational variability. Similarly to practical applications of the SDA, the ANN finds an approximate solution of the underlying optimization problem. In contrast, the main benefit of the proposed approach is that it can be implemented in a low-cost microprocessing platform, greatly improving the performance in terms of resources in comparison with other advanced techniques proposed in the literature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.