Abstract

In finite control set model predictive control (FCS-MPC) strategies, extending the prediction horizon length provides important closed-loop performance improvements. However, the computational costs are increased in exponential fashion. Transforming the problem to an equivalent box-constrained integer least-squares (ILS) formulation enables the usage of sphere decoding algorithms (SDA) that can efficiently solve this problem. Recently, a K-best sphere decoder was proposed and designed for hardware platforms. This algorithm follows a breadth-first strategy different to the conventional SDA. In this work, a hybrid SDA that combines the merits of both the K-best SDA and the conventional SDA is proposed with the objective of increasing optimality likelihood and improve control performance. In particular, it is proposed that a K-best sphere decoder delivers a preliminary optimal solution. Then, a conventional SDA uses the available calculation time to search for a better solution. Simulation and experimental results confirm the validity of the proposal in terms of performance and computational efficiency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.