Abstract

Time reversal has been demonstrated to be effective for source and novelty detection and localization. We extend here previous work in the case of a coupled structural-acoustic system, to which we refer to as vibro-acoustic. In this case, novelty means a change that the structural system has undergone and which we seek to detect and localize. A single source in the acoustic medium is used to generate the propagating field, and several receivers, both in the acoustic and the structural part, may be used to record the response of the medium to this excitation. This is the forward step. Exploiting time reversibility, the recorded signals are focused back to the original source location during the backward step. For the case of novelty detection, the difference between the field recorded before and after the structural modification is backpropagated. We demonstrate that the performance of the method is improved when the structural components are taken into account during the backward step. The potential of the method for solving inverse problems as they appear in non destructive testing and structural health monitoring applications is illustrated with several numerical examples obtained using a finite element method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.