Abstract

This paper introduces a generalized forward-backward splitting algorithm for finding a zero of a sum of maximal monotone operators $B + \sum_{i=1}^n A_i$, where $B$ is cocoercive. It involves the computation of $B$ in an explicit (forward) step and the parallel computation of the resolvents of the $A_i$'s in a subsequent implicit (backward) step. We prove the algorithm's convergence in infinite dimension and its robustness to summable errors on the computed operators in the explicit and implicit steps. In particular, this allows efficient minimization of the sum of convex functions $f + \sum_{i=1}^n g_i$, where $f$ has a Lipschitz-continuous gradient and each $g_i$ is simple in the sense that its proximity operator is easy to compute. The resulting method makes use of the regularity of $f$ in the forward step, and the proximity operators of the $g_i$'s are applied in parallel in the backward step. While the forward-backward algorithm cannot deal with more than $n = 1$ nonsmooth function, we generalize it to the case of arbitrary $n$. Examples on inverse problems in imaging demonstrate the advantage of the proposed methods in comparison to other splitting algorithms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.