Abstract

We propose a method of computational temporal ghost imaging over a single optical fiber using simple optical intensity detection instead of coherent detection. The transfer function of a temporal ghost imaging system over a single optical fiber is derived, which is a function of the total fiber dispersion and the power density spectrum of the light source. In the simulations, we find that the bandwidth of the transfer function will decrease rapidly along with the increase of fiber length or light source bandwidth, resulting in a significantly distorted ghost image. To improve the image quality, we first calculate the transfer function by approximating the optical spectrum of the light source based on intensity detection as its power density spectrum. Then, we use an optimized Fourier deconvolution to compute a high-quality image by deconvoluting the measured transfer function from the spectrum of the distorted image. Our experiments achieve single-arm ghost images of a 5-Gb/s nonreturn-to-zero pulse object over a 200-km fiber, which have almost the same quality as the two-arm ones.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call