Abstract

We present a theory of temporal diffraction, temporal imaging of a bi-photon state, and temporal ghost imaging of a time object. By applying factional Fourier transform to the bi-photon wave packet propagating in space, we could obtain a theory that shows the physical origin of dispersion cancelation, temporal imaging, nonlocal effects of time lenses, and temporal ghost imaging. We introduce the temporal diffraction distance for bi-photon wave packet and show that the bi-photon wave packet behaves like a single wave packet whose temporal diffraction distance is determined by the coherent sum of the temporal diffraction distances for the signal and the idler beams. This property yields the well known dispersion cancelation, the recovery of original bi-photon wave packet in temporal imaging, and the nonlocal combination of two time lenses placed in different arms. We also propose a method for ghost imaging of an arbitrary time object.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.