Abstract

Despite its importance, carrier conduction in electrical insulators is poorly understood. This work presents a computational study of hole conduction in single crystalline alkanes (n-C18H38 and n-C36H74). Hole mobilities are computed with the combination of molecular dynamics simulation, quantum chemical calculation, and the kinetic Monte Carlo method. The hole hopping rate is computed by the Fermi golden rule rate kernel without high temperature approximation. A strong correlation between the anisotropy of hole mobility and crystalline morphology is found. Hole mobilities in the direction of the c axis are more than an order of magnitude larger than those in the a − b plane. At room temperature, hole mobility is increased by roughly a factor of 10 due to the thermal motion of molecules. Computed anisotropic hole mobilities are in reasonable agreement with experimental values when the effect of dynamic disorder is taken into account. The results strongly indicate that hole transfer in crystalline alkane occurs in the phonon-assisted transport regime.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.