Abstract

Creating non-porous structures that offer auxetic behavior can have a variety of industrial applications, especially when the porosity impairs the functionality of the auxetic structures. This study presents the design and finite element analysis of architected bi-material auxetic plates consisting of repeating unit cells that comprise rigid rotary units and soft inclusions. The change in the design parameters of unit cells produces a variety of mechanical properties, such as different levels of Poisson’s ratio and stiffness for the architected plates that can result in specific static or dynamic responses. The natural frequencies and deflection under uniform lateral loading of the architected plates with clamped boundary conditions were investigated. Furthermore, the effectiveness of the homogenization technique based on the mechanical properties obtained from finite element analysis in predicting the dynamic and static response of the architected plate was also studied.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call